综合验光仪的主要结构
综合验光仪的主要部件包括验光盘和远近视标两部分。
1、验光盘——验光盘附设以下结构
(1)视孔。
(2)主透镜组——包括球镜组与柱镜组。
(3)内置辅镜。
(4)外置辅镜——包括交叉圆柱透镜(Jaackson cross cylinders)和旋转式棱镜(Risley prism)。
(5)调整部件。
2、视标
(1)投影远视标。
(2)近视标。
俗称“肺头”或“牛眼”,附设视孔、主透镜组、内置辅镜、外置辅镜和各调整部件。
1、视孔——位于验光盘的最内侧,左右各一个,为被测眼视线透过的通道,视孔周边附有柱镜轴向刻度和柱镜轴向游标。
2、主透镜组
(1)球镜
1)焦度范围——-20.00/m—–+20.00/m。
2)级差——0.25/m。
3)调节方法
① 球镜粗调手轮:位于内置辅镜刻度盘的外环,每旋一档增减3.00/m球镜焦度。
② 球镜细调轮盘:每拨一档增减0.25/m球镜焦度。
③ 球镜焦度读窗:位于球镜细调轮盘内侧。
(2)柱镜
1)焦度范围——0—–6.00/m。
2)级差——0.25/m。
3)轴向——0—–180度。
4)调节方法
① 柱镜焦度手轮:位于验光盘的最下方,每旋一档增减-0.25/m柱镜焦度。
② 柱镜焦度读窗:位于柱镜焦度手轮内上方。
③ 柱镜轴向手轮:位于柱镜焦度手轮外环。柱镜轴向手轮的基底部可见柱镜轴向游标和柱镜轴向刻度盘。旋动柱镜轴向手轮,可将游标调整指向预期的轴向刻度。旋动柱镜轴向手轮时可见视孔区的柱镜轴向游标发生联动,两游标指向的轴向刻度一致。
3、内置辅镜
(1)内置辅镜手轮:位于验光盘外上方,每旋动一档视孔内更换一种功能镜片。
(2)内置辅镜功能盘:内置辅镜手轮基底部有一标有各种辅镜功能英文缩写的轮盘,调整内置辅镜手轮,使选中的英文缩写位于垂直向,则视孔便内置相应的内置辅镜。
4、外置辅镜
(1)交叉圆柱透镜Jackson cross cylinders。
1)外环:标有P和A两字母,P示焦力轴向,A示翻转手轮轴向。
2)内环:内镶交叉柱镜,边缘标有红点和白点,红点示负柱镜轴向,白点示正柱镜轴向。
3)翻转手轮:位于外环A字母处,旋动翻转手轮,可见内环围绕手轮所在的轴向翻转。
(2)旋转棱镜Risley rotary prism
1)内环:内镶三棱镜透镜。
2)外环:为三棱镜底向的刻度盘,通常将刻度盘的0位对准垂直向或水平向。
3)底向手轮:位于外环边缘,测试时旋动底向手轮,可见内环的发生联动,内环边缘上的底向游标指向外环的刻度,提示测定的棱镜底向和三棱镜度。
5、调整部件
(1)垂直平衡手轮及垂直平衡游标:用于使双视孔透镜的光学中心与双眼被测眼瞳孔中心垂直向对齐。
(2)光心距手轮及光心距读疮:用于测定当双视孔透镜的光学中心与双被测眼瞳孔中心水平向对齐时,双侧透镜光学中心的距离,单位为mm。
(3)额托手轮及镜眼距读窗:用于调整并测定被测眼前主点与试片透镜后顶点的间距。
(4)集合掣:用于调整双侧验光盘的集合角度及双侧视孔透镜的光心距。
1、投影远视标
(1)视标投影仪:采用白炽光将检测视标的影像投照在视标的面板上,其照度、亮度、对比度、清晰度、偏振光折射向和单色光的波长均要求符合规范。
(2)视标遥控器:视标投影仪的各项功能以功能键的形式排列在遥控器上,验光师可根据屈光检查的需要揿动功能键,从而控制视标投影仪的各项功能。
(3)常用视标
1)E视力视标、环形视力视标、数字视力视标及儿童视力视标。
2)散光盘视标
3)红绿视标
4)远交叉视标
5)斑点状(蜂窝状)视标
6)偏振红绿视标
7)双眼平衡视标
8)Worth四点视标
9)立体视视标
10)水平对齐视标
11)垂直对齐视标
12)马氏杆视标
13)十字环形视标
14)偏振十字视标
15)十字固视视标
16)钟形盘视标
2、近视标
(1)近视标刻度杆:竖直固定于验光盘上方,近距离检测时翻下,附有公制及英制的长度单位刻度,近视标盘可在刻度杆上移动,从而精确控制检测距离。
(2)近视标盘:为一开孔的双层纸板,纸质近视标卡夹于纸板中间,可通过旋转近视标卡使不同的近视标自纸板夹的孔隙中露出,供近距离检测时使用。
(3)常用视标
1)近E视力视标、数字视力视标和字母视力视标
2)近交叉视标
3)近十字视标
4)近散光盘视标
5)横向单行视标
6)纵向单列视标
开启电源总掣,分别检视投影视标、近读灯、检影镜、座椅制动开关是否接电。
检查验光盘视孔试片的球镜读窗,若前次验光的球柱镜片留置于视孔,应旋动球镜焦度手轮将视孔试片回“0”。盖因若被测眼误用过矫的负透镜观察远视标,则会诱发调节,从而影响测定结果。故验光师每次验光结束后应及时将视孔试片恢复0位。
嘱被测者取舒适姿态坐于检测座椅,升降座椅高度,通常大致使被测双眼的中心与对侧墙面上悬挂的视标板的坐标中点相对。
旋动垂直平衡手轮,观察被测双眼与视孔垂直向相对位置,务使视孔透镜的光学中心与被测眼瞳孔中心垂直向对齐。通常使平衡标管(或平衡槽)中的气泡居中。若遇垂直性眼位偏斜并发强迫头位或原发性头位偏斜时,可适当调整验光盘的倾斜程度,以被测眼瞳孔与试片的光学中心垂直向对齐为度。
1、瞳孔间距的检测:旋动光心距手轮,将电脑验光仪所测得的瞳距数值输入光心距读窗。旋动柱镜轴向手轮,使视孔边缘的柱镜轴向标记对准轴向刻度盘90度位置,然后微量旋动光心距手轮,务使被测眼瞳孔中心与上下柱镜轴向标记呈直线对齐。使双视孔透镜的光学中心间距等于被测双眼瞳孔中心的间距。调整完毕后,可于光心距读窗读取眼镜处方远用光心距(同于被测眼瞳孔间距)书记,单位为mm。
2、视线距的检测:由于视线是注视目标与注视黄斑的连线,故将眼镜的光学中心放置于视线上则更为合理,检测方法如下。
(1)右眼视孔调整为1mm小孔辅镜PH。
(2)左眼遮盖,视孔调整为OC。
(3)投放马氏杆视标。
(4)调整光心距手轮。
(5)使右眼看到点状视标位于小孔视野中央。
(6)左眼视孔调整为小孔辅镜PH,右眼遮盖。
(7)使左眼看到点状视标位于小孔视野中央。
(8)双眼视孔调整为小孔辅镜,同时注视点状视标。
(9)微度调整光心距手轮,于光心距读窗读取并记录远视线距。
根据被测眼视网膜反射光的特点从客观的角度来定量分析其屈光状态,称为视网膜检影。综合验光仪设有专供视网膜检影检测的工作透镜。
1、视网膜检影镜的基本结构:经过平行调整的正弦波光源,经45度斜置的平面镜反射到被测眼瞳孔内,被测眼的眼底视网膜被照亮后就会发出橙红的反射光。平面镜上有一圆孔可供检测者窥见被测眼瞳孔内的反射光。采用点状投影光,反射光呈一条光带,称为反射光带。
2、视网膜反射光的移动规律:视网膜反射光通过被测眼的屈光间直射处眼外,若将屈光间质看成透镜,受透镜影响,必然在被测眼的远点聚焦,近视眼发生汇聚,远视眼发生散开,正视眼则平行传播。
若将被测眼看成未知透镜,在移动透镜时,分析通过透镜看到的目标与透镜之间相对移动的特点,就可以推断目标和观察眼在透镜的焦距范围之内,还是在透镜的焦距范围之外。由于被测眼不能移动,则代之移动视网膜检影镜射出的光源,并促使反射光移动,观察投射光相对反射光的移动特点,仍然可以判断被测眼远点所在范围,被测眼远点位于被测眼与视网膜检影镜之间,两者发生逆向移动,称为逆动;被测眼远点位于被测眼与视网膜检影镜之间,两者发生逆向移动,称为逆动;被测眼远点位于被测眼之后或检影镜之后,两者发生同向移动,称为顺动。用已知透镜将其远点调整到特定位置,通过对已知透镜进行定量分析就可以测定被测眼的屈光状态。
3、视网膜反射光移动的光学原理
(1)顺动:当被测眼为远视眼、正视眼或远点距离大于检影工作距离的近视眼时,则被测眼的反射光无实焦点或焦点落在检测者观察眼的后面。被测眼内的反射光呈正立的象,此时将检影镜的平面镜向下倾转时,反射光上方被平面镜圆孔的上缘遮盖变黑,似乎形成反射光下移的现象,由于反射光移动的方向与平面镜倾转的方向相同,故称为顺动。
(2)逆动:当被测眼为远点距离小于检影工作距离的近视眼时,则被测眼的反射光焦点落在检测者观察眼与被测眼之间,被测眼内的反射光先聚后散形成倒置的象,此时将检影镜的平面镜向下倾转时,被测眼内的反射光的下方被平面镜圆孔的上缘遮盖变黑,似乎形成反射光上移的现象,由于反射光移动的方向与平面镜倾转的方向相反,故称为逆动。
(3)中和:当被测眼(或通过已知透镜的调整)的远点距离等于检影工作距离时,则被测眼的反射光以尖锐的焦点落在平面镜的圆孔上。此时将检影镜的平面向下少量轻转时,被测眼的反射光不受遮盖,表现为明亮的橙红的反射光充满被检眼瞳孔区;将检影镜向下过度倾转,则反射光被完全遮盖,被检眼瞳孔区完全被遮盖,这种现象称为中和。
1、确定主子午轴向
(1)一致性移动:以带状光检影镜为例,检影镜必须在与其带状投影光相垂直的轴向扫描移动,即水平的投射光带沿垂直向扫描移动,垂直的投射光带沿水平向扫描移动。当用检影镜扫描一条子午线时,若带状投射光与反射光带所指向的方位相同,即二者为平行线,且二者移动的子午轴向也相同,则无论二者是顺动还是逆动,均称为一致性移动,若二者顺动称为一致性顺动,若二者逆动称为一致性逆动,证实所扫描的子午轴向为被测眼的主子午轴向。当确定一条主子午轴向后,另一条主子午轴向与其相差90度角(相互垂直)。
(2)非一致性移动:若带状投射光所扫描的子午轴向不是被测眼的竹子无轴向时,则带状投射光与反射光带所指向的轴向不相一致,即二者不相平行,且当扫描视网膜检影镜时,二者的移动方向也不相一致,称为非一致性移动。故在确定被测眼的散光轴位时,首先要分析带状投影光在静态时与反射光带所指向的轴向是否一致,继而要观察在动态扫描带状投射光时,带状投射光移动的子午轴向与反射光带移动的子午轴向是否一致(无论是顺动还是逆动)。若呈现非一致性移动,则须耐心地旋转调整带状投射光的子午轴向,使其与反射光带所指向的轴向相一致。
2、中和反射光
(1)顺动检影:比较顺动和逆动反射光的中和过程,可以发现反射光从顺动过渡到中和较易辨认。为了利用顺动反射光来进行检影检测,通常根据电脑自动验光仪的检测结果,预加过矫-0.50/m——-0.75/m的负球镜试片来改变近视眼最初表现出的逆动,并使每条钟面子午轴向的反射光均处于顺动状态。若为远视则欠矫+0.50/m—-+0.75/m。不必担心负球面透镜带来的调节可能会干扰检测结果,因为利用综合验光仪进行视网膜检影时所预置的+1.50/m工作透镜具有很好的雾视功能。
(2)判断中和度:以带状光检影镜为例,在判断中和程度时,通常对反射光带有三个评定标准,即亮度、移动速度和宽度。接近中和时,反射光带呈现出较亮、移动较快、变得较宽大。达到中和时,反射光带最亮,宽度占据整个瞳孔空间。因此看见暗淡、窄小、移动缓慢的发射光带时,提示需要增减较大焦度的试片。当反射光带变亮,移动变快,宽度变大时,须每次递变较小焦度(0.25/m)的试片。因为已事先用负球面透镜将反射光带的移动性质调整为顺动来进行检测,故须采取递减负球镜试片焦度(远时增加正球镜试片焦度),使反射光逐步达到中和。
3、记录和分析检影结果
(1)中和第一子午轴向:确定了主子午轴向的方位后,仔细扫描并比较两条主子午轴向的反射光带,找出反射光带移动较快、较亮、较宽大的主子午轴向,由于该主子午线接近中和状态,故称为第一子午轴向。用带状投射光在这条主子午轴向扫描,采取逐步减少负球镜试片(远视逐步增加正球镜试片)的方法进行中和。画线记录第一子午轴向,并在线端记录中和焦度。
(2)中和第二子午轴向:用上述方法扫描并中和与第一条主子午轴向相垂直的另一条主子午轴向。画线记录与第一子午轴向垂直的第二子午轴向方位,并在线端记录中和焦度。记录两条主子午轴向上中和焦度的图形称为光学十字图。
(3)处方转换:将视网膜检影所获得的光学十字图转换为屈光处方,若视网膜检影所获得的光学十字图提示两个主子午轴向的中和焦度一致,则证实被测眼没有散光,该焦度的符号和量值就是处方的球性透镜;若视网膜检影所获得的光学十字图提示两个主子午轴向的中和焦度不同,则须将视网膜检影所获得的光学十字图分解为两个光学十字图,分别表示处方球镜焦度和柱镜焦度。注意表示柱镜焦度的光学十字图中,0焦度所指向的轴向为处方的柱镜的轴向。
例3-1已知:水平向中和焦度为-3.00,垂直向中和焦度为-3.00
求:被测眼处方。
解:作被测眼的光学十字图,被测眼处方:-3.00。
例3-2已知:水平向中和焦度为-3.00,垂直向中和焦度为-4.00。
求:被测眼处方。
解:作被测眼的光学十字图,被测眼处方 :-3.00-1.00*180。
4、工作距离的换算
(1)换算原理:通常把综合验光仪的验光盘置于操作者手臂的长度范围内,这样可以一手操作视网膜检影镜,另一手更换被测眼前的透镜试片。从被测眼主点至检影镜窥孔之间的距离称为工作距离。
工作距离对检影结果的影响可以用公式计算如下:
D=D1-1/d2(公式3-1)式中D为处方焦度,D1为检影中和焦度。d2为工作距离(以m为单位)。
由公式3-1可知:
1)工作距为1m,则处方焦度为中和焦度减+1.00/m或加-1.00/m。
2)工作距为2/3m,则处方焦度为中和焦度减+1.50/m或加-1.50/m。
3)工作距为1/2m,则处方焦度为中和焦度减+2.00/m或加-2.00/m。
(2)工作透镜
1)工作透镜的使用方法:综合验光仪附设有标为R的功能辅片,即为预加+1.50/m或+2.00/m的正球性透镜,在67cm或50cm处进行检影时,中和焦度即为处方焦度,可省去对工作距离换算的麻烦。
2)工作透镜的原理:若在被测眼前预置+1.50/m正球性透镜,在检影时就必须先投放等量-1.50/m负球性透镜将其抵消,则在67cm处进行检影时,其中和焦度等于已预加了-1.50/m,故无需进行工作距离换算。
5、视网膜检影的评价
1、优点
(1)在采取其它主客观屈光测定的方法均不能定量或难以精确定量被测眼的屈光状态时,可试用视网膜检影的方法获取提示性信息,辅助进一步进行主观测定。
(2)为不能明确表达视觉感受的幼儿或成人进行客观屈光测定。
(3)可通过调整视网膜检影镜的投射光焦点,观察晶状体及玻璃体等屈光间质的透明程度。
2、缺点
(1)常态检影受眼的调节影响较大,检影验光的结果表现为近视偏深、远视偏浅。
(2)常态检影视网膜反射光欠亮,给判断结果带来困难。
(3)过分依赖检影者的经验和操作技能。
(4)工作距离以及反射光移动所提示的主子午线轴向等均非精确值。
(5)测定结果仍需通过主观屈光测定方法进行验证才能开具处方。
3、调节张力的影响
屈光不正眼的调节张力,因难以定量且活跃多变,故对烟的屈光定量分析构成重要的干扰因素。通常使近视眼的测定结果偏深,远视眼的测定结果偏浅。